SARS-CoV-2 sewage surveillance; experiences from NL

Gertjan Medema On behalf of a research consortium

Bridging Science to Practice

Towards a Water-wise World

Erasmus MC

zafing

Miranda de Graaf, Marion Koopmans, Evelien de Schepper, Izquierdo Lara, Claudia Schapendonk, Patrick Bindels, Johan van der Lei, Margreet Vos

RIJNMOND GEZOND BASE

Rotterdam-Rijnmond Ewout Fanoy

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid,

Welzijn en Sport Eelco Franz, Roan Pijnacker, Christian Carrizosa Balmont

KWR

Goffe Elsinga, Leo Heijnen, Frederic Been, Gertjan Medema

Bert Palsma, Imke Leenen

PARTNERS4URBANWATER

onderzoek & advies

Jeroen Langeveld, Remy Schilperoort, Johan Post Waterschap Hollandse Delta Olaf Duin Hoogheemraadschap van Delfland Delfland

waterQnet

Marco Dignum, Alex Veltman, Alice Fermont, Jan Peter van der Hoek

\sim Sewage surveillance

Added value of wastewater information

SARS-CoV-2 circulation in city population

Use case: early warning

Added value of wastewater information

Early warning of trends in SARS-CoV-2 circulation

In the first wave, we observed SARS-CoV-2 RNA in wastewater six days before the first cases were reported

Use case: objective SARS-CoV-2 circulation in cities

Added value of wastewater information

Objective indicator of SARS-CoV-2 circulation, independent of human testing

Use case: objective SARS-CoV-2 circulation in cities

Added value of wastewater information

Objective indicator of SARS-CoV-2 circulation, independent of human testing:

everybody is going to the toilet, not everybody is going to get tested

- test availability
- testing strategy
- testing willigness
- asymptomatic 'case'

Newly reported COVID-19 hospitalizations with 7d moving average

MARITIEM

\sim Use case: understand COVID-19 dynamics

High resolution:

- Time: 3/week
- Space: city districts
- Matched population

TOPSECTOR

MARITIEM

\sim Population size affects sewer signal dynamics

\sim Population size affects sewer signal dynamics

\sim Population size affects sewer signal dynamics

-----RG PRETORIALAAN

TOPSECTOR

MARITIEM

\sim Population size affects sewer signal dynamics

~ Data analysis Rotterdam

Early warning?

Depends largely on delay in human testing between disease onset and taking sample

Analysis conducted by Jeroen Langeveld & Johan Post

KWR, GGD Rotterdam, Erasmus MC, Partners4UrbanWater, RHDHV, RIVM, Water authorities: Hollandse Delta, Delfland, Schieland & Krimpenerwaard

KWR

MARITIEM

~ Data analysis Rotterdam

Early warning?

Depends largely on delay in human testing between disease onset and taking sample

Analysis conducted by Jeroen Langeveld & Johan Post

KWR, GGD Rotterdam, Erasmus MC, Partners4UrbanWater, RHDHV, RIVM, Water authorities: Hollandse Delta, Delfland, Schieland & Krimpenerwaard

KWR

MARITIEM

\sim Data analysis Rotterdam data

Sewage as objective indicator of virus circulation

Undertesting of humans in certain city areas?

Sewage data used to mobilize testing facilities to city areas with low case number/sewer signal ratio

Linking sewage data to human testing data: correct for human testing behaviour via total number of tests

KWR, GGD Rotterdam, Erasmus MC, Partners4UrbanWater, RHDHV, RIVM, Water authorities: Hollandse Delta, Delfland, Schieland & Krimpenerwaard

jun jul aug sep okt nov jun jul aug sep okt nov jun jul aug sep okt nov Datum

KWR

Emergence of Variants of Concern (VoC)

Observe emergence/circulation of new VoC

Understand disease, transmission dynamics

Observe vaccination efficacy to VoC

\sim NGS for variant circulation in wastewater

Erasmus MC

Conducted by

Viroscience at

zafing

UK variant mutations/deletions in Rotterdam wastewater

gene	nucleotide	amino acid	
ORF1ab	C3267T	T1001I	
	C5388A	A1708D	
	T6954C	I2230T	
	11288-11296	SGF 3675-3677	
	deletion	deletion	
spike	21765-21770 deletion	HV 69-70 deletion	
	21991-21993 deletion	Y144 deletion	
	A23063T	N501Y	
	C23271A	A570D	
	C23604A	P681H	
	C23709T	T716I	
	T24506G	S982A	
	G24914C	D1118H	
Orf8	C27972T	Q27stop	
	G28048T	R52I	
	A28111G	Y73C	
N	28280 GAT->CTA	D3L	
	C28977T	S235F	

Vanaf 01-01-2021

Versatile Emerging Infectious Disease Observatory

This work is supported by European Unio''s Horizaon 2020 research and innovation programme under Grant No.874735 (VEO).

12110/2020-12-30

VoC signature mutation multiplex ddPCR

Spike protein

Use case: Variants of Concern introduction N501Y mutation vs 'wild type' by ddPCR

Wastewater surveillance is of added value for COVID-19 surveillance

Early warning

Objective population surveillance, independent of human test behaviour

Feasible for emergence of (signature mutations of) VoC

Fast (with ddPCR within days, compared to 3-4 weeks for clinical surveillance with NGS)

Efficient: on population sample, allowing high resolution surveillance

KWR

TOPSECTOR

MARITIEN

~ National Sewage Surveillance Netherlands

Ministry of Health RIVM

From sentinel to all WWTP Now 2x/week National corona dashboard

Gemiddeld aantal virusdeeltjes per 100.000 inwoners in rioolwater

Deze kaart toont het gemiddeld aantal virusdeeltjes per 100.000 inwoners, per veiligheidsregio.

Legenda

0	0.01	50	250	500	750	1000	
×10	0 miljard						

Objective:

Increase information/response to new variants

Currently: Round 3 EU sewage snapshot (Mar 2021)

Variant detection with sequencing and ddPCR

Recommendation to MS: variant surveillance via wastewater

In collaboration with:

EurEau

Water Europe

TECHNISCHE UNIVERSITÄT

DARMSTAD

∼ Wastewater SARS Public Health Environmental REsponse

KWR

UNIVERSITY OF CALIFORNIA

 \sim

Bridging Science to Practice

Towards a Water-wise World

~ Normalization of SARS-CoV-2 signal

Human wastewater is diluted in sewer network by other water flows (rain, industrial, groundwater, ...)

Dilution is dynamic, hence normalization of the SARS-CoV-2 concentration in wastewater is essential

- 1. Wastewater flow: virus load per day
- 2. Population size: virus load per 10,000 people per day
- 3. Check normalization with conductivity
- 4. Check normalization with Crassphage (virus that infects bacteria that are exclusively present in the human gut). Most people shed high concentrations of Crass-phage in their stool.

Crass-phage can be used as index for human faecal fraction of sewage

~ Normalization of SARS-CoV-2 signal

Human wastewater is diluted in sewer network by other water flows (rain, industrial, groundwater, ...)

Dilution is dynamic, hence normalization of the SARS-CoV-2 concentration in wastewater is essential

- 1. Wastewater flow: virus load per day
- 2. Population size: virus load per 10,000 people per day
- 3. Check normalization with conductivity
- 4. Check normalization with Crassphage (virus that infects bacteria that are exclusively present in the human gut). Most people shed high concentrations of Crass-phage in their stool.

Crass-phage can be used as index for human faecal fraction of sewage

KWR

\sim Normalization with flow vs Crass-phage

