
Figure 2: Heatmap of HTS data of all WWTPs effluent and sewage samples. Shown are the average 

relative abundances (%) of the top 25 most abundant OTUs with a minimum abundance of 0.1% in 

all samples per location. OTUs were classified at the genus level. 

Figure 3: Schematic representation of an example 

where we applied HTS as a tool to track changes 

in surface waters. Stream 2 receives sewage 

overflow water and WWTP effluent discharge. It 

is expected that the water of stream 2 shows a 

different microbial profile before (sampling point 

1 ) than after WWTP discharge (sampling point 3). 

This effect should also be measurable in stream 3, 

where we compared the microbial profile before 

(sampling point 4) and after (sampling points 5,6 

and 7) inflow of stream 2. 

Figure 4: Source tracker analysis of the relative amount (%) of influence of sewage or WWTP 

effluent on the different sampling locations (sample numbers from Fig 3). Samples were taken on 

different dates.  

Background 
In surface- and wastewater management it is important to determine the 

origin of the water and of the potentially problematic substances/organisms it 

might contain. These are faecal contamination, nutrient-related questions, or 

malfunctioning wastewater treatment plants (WWTPs). This research examines 

the possible contribution of the DNA fingerprinting technique High Throughput 

Sequencing (HTS) in clarifying such questions.

Challenges
Questions related to various water types were tried to be answered with HTS:

1.    Is WWTP effluent discharge into surface water traceable? And if so, how far 

from the source?

2.    Is the influence of sewer overflow into surface water, and are the different 

origins of the overflow, traceable?

3.    Is leakage of WWTP effluent into groundwater traceable?

4.    Is the origin of surface water that flows into other surface water traceable? 

These questions resulted in six research cases with Dutch water boards. One 

case is given as an example.

Results and discussion
•   With HTS, we were able to distinguish sewage and WWTP effluent microbiomes 

(Figure 1).

•   These microbiomes show characteristic OTUs for sewage and WWTP effluent 

(Figure 2). 

•    These microbiomes are sources that influence the microbial community on 

receiving waters. In our example case (Figure 3), the influence of these sources 

was traceable on the different sample locations and quantified using Source 

Tracker (Knight et al., 2011) (Figure 4). 

Figure 1: Principal Component Analysis of HTS 

data of all sewage and WWTP effluent samples 

from different sampling dates and different 

locations.
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Conclusion 
HTS is a powerful technique that can distinguish different sources that 
have a specific microbial fingerprint. These fingerprints can be detected 
specifically and with high sensitivity in sinks. This gives the opportunity to 
apply HTS to answer complex questions related to water management, 
where it is important to know the origin of different water bodies.
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