UV/H₂O₂ processes for removal of organic micropollutants

optimization of process conditions and reactor geometry

Contents

- Introduction
- Modeling of UV/H₂O₂ processes
- Optimization of reactor geometry
- Pilot experiments at drinking water utilities
 - $\circ~$ Comparison of performance (E_{EO})
 - Effect of pretreatment
 - Transformation products
- Conclusions

Introduction

- Increasing amounts and concentrations of organic micropollutants in surface water (e.g. personal care products, pesticides, pharmaceuticals)
- Total concentrations up to ± 30 µg/L
- How to remove in order to produce drinking water?

- Membrane filtration: concentrate?
- (Advanced) oxidation processes:
 - O₃: bromide is turned into bromate
 - UV/H₂O₂: "high" energy demand

Introduction Organic micropollutants

Increasing contents of (polar) organic micropollutants like

Watercycle Research Institute

- Pesticides
- Personal care products
- Pharmaceuticals

Due to

- Aging
- Climate change
- REACH

Surface water (e.g. river Meuse) contains up to ± 30 µg pharmaceuticals and metabolites/L

Expected: 40% increase within next

35 years

Dutch Situation, Advanced oxidation processes: No O₃ because of high bromide levels → UV/H₂O₂ process.

UV/H₂O₂ processes Modeling

UV:

- Photolysis of micropollutants
- Disinfection

Oxidation:

- Photolysis of $H_2O_2 \longrightarrow OH$
- Oxidation of micropollutants by •OH

Kinetic model:

- Describing conversion of compound as a function of UV dose
- Key factors photolysis: quantum yield and molecular absorption
- Key factors oxidation: reaction rate constant
- Simultaneous calculation of total reaction scheme

KWR

UV/H₂O₂ processes Modeling

CFD model:

Describing UV dose distribution through reaction vessel

- 1. Kinetic model: Conversion as a function of UV dose
- 2. CFD:

UV dose distribution

3. Combination: Conversion in the UV reactor

365 mJ/cm²

UV/H₂O₂ processes Modeling

Model:

- Accurate prediction of conversion in reactor
- Different doses
- Different H₂O₂ concentrations
- Differents water matrices.
- Various types of reactors

730 mJ/cm²

 $10 \text{ mg H}_2\text{O}_2\text{/L}$

UV/H₂O₂ processes Modeling

Model:

- Accurate prediction of conversion in reactor
- Different doses
- Different H₂O₂ concentrations
- Differents water matrices.
- Various types of reactors

UV/H₂O₂ processes Modeling

Model:

- Accurate prediction of conversion in reactor
- different doses
- Different H₂O₂ concentrations
- Differents water matrices.
- Various types of reactors

UV/H₂O₂ processes Modeling

Other applications of modeling:

- Optimization of reaction conditions
- Optimization of reactor geometry

Regular UV disinfection reactor Decrease flow by a factor of about 10 to obtain UV dose of about 500 mJ/cm²

Regular reactor vessel has been optimized for disinfection, not for AOP.

Design and construction of new UV-reactors

Tested at van Remmen UV Technology and at two Dutch drinking water companies (Dunea and WML)

Wols et al. (2012), Chem.Eng.J. 210, 289-297 Wols and Hofman-Caris (2012), Wat.Res., 46(9), 2815-2827 Wols et al.(2012), Oz.Sci.Eng. 34(2), 81-91 Wols and Hofman-Caris (2013), Wat.Res. 47(15), 5876-5888 Wols et al. (2014), Chem.Eng.J. 255, 334-343 Wols et al. (2015). Chem.Eng.J. 263, 336-345 Wols et al. (2015). Wat.Res. 75, 11-24

Optimization of reactor geometry Five different reactors tested

Conventional disinfection reactor D130

Optimized reactor D200

- one or two flow plates
- one 120 W LP lamp
- 1-2.5 m³/hour

NEW

- Four 300 W LP lamps
- 10 m³/hour
- UV-T >85%

<u>Chaos</u>

- Ten 120 W LP lamps
- 10 m³/hour
- Longer residence time
- Broader UV-dose distribution, higher mean UV dose.

Process optimization

Experiments at van Remmen UV Technology; three new types of reactors

D130: Original disinfection reactor

D200 with one flow plate:

20-30% higher removal of pharmaceuticals compared to D130 (conventional)

NEW

At UV-T = 85-90% 5-15% higher removal of

pharmaceuticals, compared to D200

UV-T = 75%

Process optimization

Experiments at van Remmen UV Technology; three types of reactors

CHAOS

Wider UV-dose distribution; lower degradation for compounds with high removal rates (5-10% compared to D200), higher conversion for compounds with low removal rates

Degradation of micropollutants Comparison by means of E_{EO}

$$EEO = \frac{P}{F * \log \frac{Ci}{cf}}$$

- E_{EO} = electrical energy per order
- P = electrical power
- F = flow
- C_i = concentration influent
- C_f = concentration effluent

For comparison of:

- Effectivity for various compounds under identical conditions and in the same reactor
- Effectivity of different reactors for the same compound(s) under identical conditions
- Influence of conditions for the same compound(s) in the same reactor.

Effect of reactor geometry Experiments at van Remmen UV Technology

Blue bar: "conventional disinfection reactor" (D130)

Green bar: D200, one flow plate

Red bar: D200: two flow plates

Process optimization

Experiments at Dunea Drinking Water company

Three types of reactors tested: D200 with two flow plates, NEW and CHAOS

UV-T = 75%

Increase process efficiency by water pre-treatment: removal of NOM and part of micropollutants:

O₃/H₂O₂ or GAC filtration: higher UV-T (~ 87%)

30-70% decrease in energy demand; most efficient for NEW reactor.

Different circumstances

Dunea

UV-T = 75%, improved by pretreatment

Accurate model predictions

In general relatively high conversions

WML

UV-T = 94%

Actual conversion higher than predicted values:

Reflection at reactor wall has to be taken into account: >20% higher UV dose

UV-T improves further to 96% during reaction

Degradation of micropollutants at WML Model versus measurements

Taking reflection into account:

Good correlation between predicted

(green bars) and measured (red bars)

conversions

Effect of water matrix D200

- Blue bars: WML
- Green bars: Dunea, O₃/H₂O₂ pretreatment
- Red bars: Dunea, no pretreatment
- Purple bars: Dunea, ACF pretreatment

Watercycle Research Institute

• Yellow bars: Van Remmen UV Technology

19

Effect of water matrix D200

Type of Water	Additional pretreatment	UX-T	TOC (mg C/L)
Wijhe		86	1.4
Dunea		82	3.3
Dunea	ACF	86	2.4
Dunea	O_3/H_2O_2	87	3.4
WML		94	1.4

Effect H₂O₂ concentration Experiments at WML

The lower the H_2O_2 concentration the more energy will be required.

E_{EO} for different compounds

Large differences in susceptibility of compounds for UV/H_2O_2

Some compounds show large influence of conditions/reactor

Degradability of some compounds hardly affected by conditions/reactor

Process optimization

Dunea:

pretreatment gives better results (less energy required)

WML:

```
Optimization in UV-dose and \rm H_2O_2
```

concentration

Formation of transformation products?

UV-dose (mJ/cm²)	Average conversion (%)
730	90
487	85
365	81

H_2O_2 conc. (mg/L)	Average conversion (%)
9.4	78
4.5	69
2.8	56

Process optimization Where to look at?

For sufficient conversion of mother compounds lower UV dose and/or H_2O_2 concentration can be applied.

However: higher concentrations of transformation products observed

730 mJ/cm²

Process optimization Where to look at?

For sufficient conversion of mother compounds lower UV dose and/or H_2O_2 concentration can be applied.

However: higher concentrations of transformation products observed

487 mJ/cm²

Process optimization Where to look at?

For sufficient conversion of mother compounds lower UV dose and/or H_2O_2 concentration can be applied.

However: higher concentrations of transformation products observed

365 mJ/cm²

Conclusions

- UV/H₂O₂ processes very effective for degradation of a broad range of organic micropollutants
- 2. Modeling gives good prediction of conversions
- 3. Modeling can be used to improve process conditions and reactor geometry.
- 4. Pre-treatment can result in 30-70% energy savings

- Improved reactor geometry results in 30-40% energy savings
- 6. Large differences in E_{EO} values, depending on reactor geometry, conditions (H₂O₂
 concentration, water matrix) and type of compounds
- 7. Degradability of some compounds strongly depends on conditions and/or UV reactor
- 8. Optimization: higher concentrations of transformation products may occur

Acknowledgment

Ton Knol (Dunea) Willem van Pol (WML) Ton van Remmen and Kaspar Groot Kormelink (van Remmen UV Technology) Danny Harmsen (KWR) Bas Wols (KWR)

IUVA

You, for your kind attention

DEMEAU: This project has received funding from the European Union's Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement no. 308339; and received financial support from the Dutch program "TKI Water technology"

Bridging science to practice

Questions?

KWR Watercycle Research Institute